Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Am J Med Case Rep ; 8(9): 299-305, 2020.
Article in English | MEDLINE | ID: covidwho-2168692

ABSTRACT

BACKGROUND: The COVID-19 infection which emerged in December 2019, is caused by the virus SARS-CoV-2. Infection with this virus can lead to severe respiratory illness, however, myocarditis has also been reported. The purpose of this study is to identify the clinical features of myocarditis in COVID-19 patients. METHODS: A systematic review was conducted to investigate characteristics of myocarditis in patients infected with COVID-19 using the search term "Coronavirus" or "COVID" and "myocarditis," "heart," or "retrospective." Case reports and retrospective studies were gathered by searching Medline/Pubmed, Google Scholar, CINAHL, Cochrane CENTRAL, and Web of Science databases. 11 articles were selected for review. RESULTS: COVID-19 myocarditis affected patients over the age of 50 and incidences among both genders were equally reported. Patients presented with dyspnea, cough, fever with hypotension and chest pain. Laboratory tests revealed leukocytosis with increased C-reactive protein, while arterial blood gas analysis demonstrated respiratory acidosis. All cardiac markers were elevated. Radiographic imaging of the chest showed bilateral ground glass opacities or bilateral infiltrates, while cardiac magnetic resonance imaging produced late gadolinium enhancements. Electrocardiography demonstrated ST-segment elevation or inverted T waves, while echocardiography revealed reduced left ventricular ejection fraction with cardiomegaly or increased wall thickness. Management with corticosteroids was favored in most cases, followed by antiviral medication. The majority of studies reported either recovery or no further clinical deterioration. CONCLUSION: Current available data on COVID-19 myocarditis is limited. Further research is needed to advance our understanding of COVID-19 myocarditis.

2.
Biomedicines ; 10(10)2022 Oct 16.
Article in English | MEDLINE | ID: covidwho-2071222

ABSTRACT

The latest SARS-CoV-2 variant of concern (VOC), Omicron (B.1.1.529), has diversified into more than 300 sublineages. With an expanding number of newly emerging sublineages, the mutation profile is also becoming complicated. There exist mutually exclusive and revertant mutations in different sublineages. Omicron sublineages share some common mutations with previous VOCs (Alpha, Beta, Gamma, and Delta), indicating an evolutionary relationship between these VOCs. A diverse mutation profile at the spike-antibody interface, flexibility of the regions harboring mutations, mutation types, and coexisting mutations suggest that SARS-CoV-2's evolution is far from over.

3.
J Autoimmun ; 126: 102779, 2022 01.
Article in English | MEDLINE | ID: covidwho-1561067

ABSTRACT

Severe Acute Respiratory Coronavirus (SARS-CoV-2) has been emerging in the form of different variants since its first emergence in early December 2019. A new Variant of Concern (VOC) named the Omicron variant (B.1.1.529) was reported recently. This variant has a large number of mutations in the S protein. To date, there exists a limited information on the Omicron variant. Here we present the analyses of mutation distribution, the evolutionary relationship of Omicron with previous variants, and probable structural impact of mutations on antibody binding. Our analyses show the presence of 46 high prevalence mutations specific to Omicron. Twenty-three of these are localized within the spike (S) protein and the rest localized to the other 3 structural proteins of the virus, the envelope (E), membrane (M), and nucleocapsid (N). Phylogenetic analysis showed that the Omicron is closely related to the Gamma (P.1) variant. The structural analyses showed that several mutations are localized to the region of the S protein that is the major target of antibodies, suggesting that the mutations in the Omicron variant may affect the binding affinities of antibodies to the S protein.


Subject(s)
Antibodies, Viral/immunology , COVID-19/virology , SARS-CoV-2/genetics , Binding Sites , COVID-19/immunology , Humans , Mutation , Phylogeny , Protein Structure, Tertiary , Spike Glycoprotein, Coronavirus/genetics
4.
Comput Biol Med ; 141: 105025, 2022 02.
Article in English | MEDLINE | ID: covidwho-1509703

ABSTRACT

Studying the structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein is important to understand the infection process. The S protein is necessary in completing the virus life cycle and is responsible for the appearance of new variants and drug and vaccine resistance. Understanding the structure and dynamics of biological macromolecules is essential for understanding how they function. In this work, we investigated the effects of mutations on S protein stability and solubility through molecular dynamic (MD) simulation in a 100 ns (ns) period. We screened four variants in addition to the wild type (WT). Results show that changes on MD simulation parameters of S protein indicate fluctuations and changes in the conformation, especially in the area between 300 and 600 amino acids (aa). This provides us an image of how the virus protein can reshape itself to adapt to any changes that occur in human angiotensin-converting enzyme 2 or drugs that can target the protein region. Our results also show that the Brazil variant has high fluctuations and unstable folding at some stages compared with other variants.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Molecular Dynamics Simulation , Mutation , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Thermodynamics
5.
Pathogens ; 9(5)2020 Apr 26.
Article in English | MEDLINE | ID: covidwho-1448915

ABSTRACT

Coronaviruses (CoVs) are positive-stranded RNA viruses that infect humans and animals. Infection by CoVs such as HCoV-229E, -NL63, -OC43 and -HKU1 leads to the common cold, short lasting rhinitis, cough, sore throat and fever. However, CoVs such as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and the newest SARS-CoV-2 (the causative agent of COVID-19) lead to severe and deadly diseases with mortality rates ranging between ~1 to 35% depending on factors such as age and pre-existing conditions. Despite continuous global health threats to humans, there are no approved vaccines or drugs targeting human CoVs, and the recent outbreak of COVID-19 emphasizes an urgent need for therapeutic interventions. Using computational and bioinformatics tools, here we present the feasibility of reported broad-spectrum RNA polymerase inhibitors as anti- SARS-CoV-2 drugs targeting its main RNA polymerase, suggesting that investigational and approved nucleoside RNA polymerase inhibitors have potential as anti-SARS-CoV-2 drugs. However, we note that it is also possible for SARS-CoV-2 to evolve and acquire drug resistance mutations against these nucleoside inhibitors.

6.
J Autoimmun ; 124: 102715, 2021 11.
Article in English | MEDLINE | ID: covidwho-1437496

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been rapidly evolving in the form of new variants. At least eleven known variants have been reported. The objective of this study was to delineate the differences in the mutational profile of Delta and Delta Plus variants. High-quality sequences (n = 1756) of Delta (B.1.617.2) and Delta Plus (AY.1 or B.1.617.2.1) variants were used to determine the prevalence of mutations (≥20 %) in the entire SARS-CoV-2 genome, their co-existence, and change in prevalence over a period of time. Structural analysis was conducted to get insights into the impact of mutations on antibody binding. A Sankey diagram was generated using phylogenetic analysis coupled with sequence-acquisition dates to infer the migration of the Delta Plus variant and its presence in the United States. The Delta Plus variant had a significant number of high-prevalence mutations (≥20 %) than in the Delta variant. Signature mutations in Spike (G142D, A222V, and T95I) existed at a more significant percentage in the Delta Plus variant than the Delta variant. Three mutations in Spike (K417N, V70F, and W258L) were exclusively present in the Delta Plus variant. A new mutation was identified in ORF1a (A1146T), which was only present in the Delta Plus variant with ~58 % prevalence. Furthermore, five key mutations (T95I, A222V, G142D, R158G, and K417N) were significantly more prevalent in the Delta Plus than in the Delta variant. Structural analyses revealed that mutations alter the sidechain conformation to weaken the interactions with antibodies. Delta Plus, which first emerged in India, reached the United States through England and Japan, followed by its spread to more than 20 the United States. Based on the results presented here, it is clear that the Delta and Delta Plus variants have unique mutation profiles, and the Delta Plus variant is not just a simple addition of K417N to the Delta variant. Highly correlated mutations may have emerged to keep the structural integrity of the virus.


Subject(s)
COVID-19/genetics , Evolution, Molecular , Mutation, Missense , Phylogeny , SARS-CoV-2/genetics , Amino Acid Substitution , COVID-19/epidemiology , COVID-19/transmission , Humans , Prevalence , SARS-CoV-2/metabolism
7.
J Virol ; 95(24): e0143721, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1434897

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 19 (COVID-19) pandemic. Despite unprecedented research and developmental efforts, SARS-CoV-2-specific antivirals are still unavailable for the treatment of COVID-19. In most instances, SARS-CoV-2 infection initiates with the binding of Spike glycoprotein to the host cell ACE2 receptor. Utilizing the crystal structure of the ACE2/Spike receptor-binding domain (S-RBD) complex (PDB file 6M0J) in a computer-aided drug design approach, we identified and validated five potential inhibitors of S-RBD and ACE-2 interaction. Two of the five compounds, MU-UNMC-1 and MU-UNMC-2, blocked the entry of pseudovirus particles expressing SARS-CoV-2 Spike glycoprotein. In live SARS-CoV-2 infection assays, both compounds showed antiviral activity with IC50 values in the micromolar range (MU-UNMC-1: IC50 = 0.67 µM and MU-UNMC-2: IC50 = 1.72 µM) in human bronchial epithelial cells. Furthermore, MU-UNMC-1 and MU-UNMC-2 effectively blocked the replication of rapidly transmitting variants of concern: South African variant B.1.351 (IC50 = 9.27 and 3.00 µM) and Scotland variant B.1.222 (IC50 = 2.64 and 1.39 µM), respectively. Following these assays, we conducted "induced-fit (flexible) docking" to understand the binding mode of MU-UNMC-1/MU-UNMC-2 at the S-RBD/ACE2 interface. Our data showed that mutation N501Y (present in B.1.351 variant) alters the binding mode of MU-UNMC-2 such that it is partially exposed to the solvent and has reduced polar contacts. Finally, MU-UNMC-2 displayed high synergy with remdesivir, the only approved drug for treating hospitalized COVID-19 patients. IMPORTANCE The ongoing coronavirus infectious disease 2019 (COVID-19) pandemic is caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More than 207 million people have been infected globally, and 4.3 million have died due to this viral outbreak. While a few vaccines have been deployed, a SARS-CoV-2-specific antiviral for the treatment of COVID-19 is yet to be approved. As the interaction of SARS-CoV-2 Spike protein with ACE2 is critical for cellular entry, using a combination of a computer-aided drug design (CADD) approach and cell-based in vitro assays, we report the identification of five potential SARS-CoV-2 entry inhibitors. Out of the five, two compounds (MU-UNMC-1 and MU-UNMC-2) have antiviral activity against ancestral SARS-CoV-2 and emerging variants from South Africa and Scotland. Furthermore, MU-UNMC-2 acts synergistically with remdesivir (RDV), suggesting that RDV and MU-UNMC-2 can be developed as a combination therapy to treat COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/pharmacology , Chemistry, Pharmaceutical/methods , Chlorocebus aethiops , Computer Simulation , Drug Design , HEK293 Cells , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Spike Glycoprotein, Coronavirus , Vero Cells
8.
Microbiol Spectr ; 9(2): e0054921, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1381170

ABSTRACT

In one year of the coronavirus disease 2019 (COVID-19) pandemic, many studies have described the different metabolic changes occurring in COVID-19 patients, linking these alterations to the disease severity. However, a complete metabolic signature of the most severe cases, especially those with a fatal outcome, is still missing. Our study retrospectively analyzes the metabolome profiles of 75 COVID-19 patients with moderate and severe symptoms admitted to Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Lombardy Region, Italy) following SARS-CoV-2 infection between March and April 2020. Italy was the first Western country to experience COVID-19, and the Lombardy Region was the epicenter of the Italian COVID-19 pandemic. This cohort shows a higher mortality rate compared to others; therefore, it represents a unique opportunity to investigate the underlying metabolic profiles of the first COVID-19 patients in Italy and to identify the potential biomarkers related to the disease prognosis and fatal outcome. IMPORTANCE Understanding the metabolic alterations occurring during an infection is a key element for identifying potential indicators of the disease prognosis, which are fundamental for developing efficient diagnostic tools and offering the best therapeutic treatment to the patient. Here, exploiting high-throughput metabolomics data, we identified the first metabolic profile associated with a fatal outcome, not correlated with preexisting clinical conditions or the oxygen demand at the moment of diagnosis. Overall, our results contribute to a better understanding of COVID-19-related metabolic disruption and may represent a useful starting point for the identification of independent prognostic factors to be employed in therapeutic practice.


Subject(s)
Blood Chemical Analysis , COVID-19/epidemiology , COVID-19/mortality , Energy Metabolism/physiology , Metabolome/physiology , Aged , Aged, 80 and over , Biomarkers/blood , Comorbidity , Female , Humans , Italy/epidemiology , Male , Middle Aged , Prognosis , Retrospective Studies , SARS-CoV-2
9.
World J Gastroenterol ; 27(29): 4763-4783, 2021 Aug 07.
Article in English | MEDLINE | ID: covidwho-1348715

ABSTRACT

The emergence and rapid spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 180 million confirmed cases resulting in over 4 million deaths worldwide with no clear end in sight for the coronavirus disease 19 (COVID-19) pandemic. Most SARS-CoV-2 exposed individuals experience mild to moderate symptoms, including fever, cough, fatigue, and loss of smell and taste. However, many individuals develop pneumonia, acute respiratory distress syndrome, septic shock, and multiorgan dysfunction. In addition to these primarily respiratory symptoms, SARS-CoV-2 can also infiltrate the central nervous system, which may damage the blood-brain barrier and the neuron's synapses. Resultant inflammation and neurodegeneration in the brain stem can further prevent efferent signaling to cranial nerves, leading to the loss of anti-inflammatory signaling and normal respiratory and gastrointestinal functions. Additionally, SARS-CoV-2 can infect enterocytes resulting in gut damage followed by microbial dysbiosis and translocation of bacteria and their byproducts across the damaged epithelial barrier. As a result, this exacerbates pro-inflammatory responses both locally and systemically, resulting in impaired clinical outcomes. Recent evidence has highlighted the complex interactions that mutually modulate respiratory, neurological, and gastrointestinal function. In this review, we discuss the ways SARS-CoV-2 potentially disrupts the gut-brain-lung axis. We further highlight targeting specific responses to SARS-CoV-2 for the development of novel, urgently needed therapeutic interventions. Finally, we propose a prospective related to the individuals from Low- and Middle-Income countries. Here, the underlying propensity for heightened gut damage/microbial translocation is likely to result in worse clinical outcomes during this COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Brain , Humans , Lung , Pandemics , Prospective Studies
10.
Comput Struct Biotechnol J ; 19: 3799-3809, 2021.
Article in English | MEDLINE | ID: covidwho-1284026

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections remain unmanageable in some parts of the world. As with other RNA viruses, mutations in the SARS-CoV-2 gene have been continuously evolving. Recently, four variants have been identified, B.1.1.7, B.1.351, P.1 and CAL.20C. These variants appear to be more infectious and transmissible than the original Wuhan-Hu-1 virus. Using a combination of bioinformatics and structural analyses, we show that the new SARS-CoV-2 variants emerged in the background of an already known Spike protein mutation D614G together with another mutation P323L in the RNA polymerase of SARS-CoV-2. The phylogenetic analysis showed that the CAL.20C and B.1.351 shared one common ancestor, whereas the B.1.1.7 and P.1 shared a different ancestor. Structural comparisons did not show any significant difference between the wild-type and mutant ACE2/Spike complexes. Structural analysis indicated that the N501Y mutation may increase hydrophobic interactions at the ACE2/Spike interface. However, reported greater binding affinity of N501Y Spike with ACE2 does not seem to be entirely due to increased hydrophobic interactions, given that Spike mutation R417T in P.1 or K417N in B.1.351 results in the loss of a salt-bridge interaction between ACE2 and S-RBD. The calculated change in free energy did not provide a clear trend of S protein stability of mutations in the variants. As expected, we show that the CAL.20C generally migrated from the west coast to the east coast of the USA. Taken together, the analyses suggest that the evolution of variants and their infectivity is complex and may depend upon many factors.

11.
Ann Neurosci ; 28(1-2): 94-100, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1223683

ABSTRACT

BACKGROUND: Coronaviruses (CoVs) have a neuroinvasive potential, which has been discussed in various research papers. During the current pandemic, the novel CoV, i.e., SARS-CoV-2, is causing a considerable number of fatalities and posing a great danger of a recurrent epidemic. COVID-19 has been labeled as a public health emergency of international concern, and the epidemic curves are on the rise. PURPOSE: Some studies discuss the neurological implications of SARS-CoV-2 but in light of growing number of evidences we cannot ignore the planning of mental health care settings in COVID-19. We are discussing how this novel CoV can affect the human brain directly and indirectly, including psychiatric problems, and how neurological conditions can be explored as a diagnostic tool in COVID-19 by analyzing cohort studies and review papers that discuss the recent neurological findings in COVID-19. METHOD: Current research and review papers were searched to find out any relation between the COVID-19 disease and the altered mental health. This study attempts to find out neurological symptoms in a large population affected by COVID-19 and thus filtering out individual case reports and cohort studies which have a patient pool of less than 50. RESULTS: This unique observation revealed that SARS-CoV-2 has direct neurological manifestations such as anosmia and gustatory impairment, encephalopathy, and seizures as well as an indirect effect on the psychiatric health such as anxiety, amnesia, etc. because of psychosocial stress. CONCLUSION: The most commonly reported neurological symptoms should not be ignored and must be tested for COVID-19. More neurological studies like medical imaging and neuropathology should be performed on these COVID-19 patients.

12.
Expert Opin Ther Pat ; 31(4): 339-350, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1087605

ABSTRACT

Introduction: Coronaviruses encode a helicase that is essential for viral replication and represents an excellent antiviral target. However, only a few coronavirus helicase inhibitors have been patented. These patents include drug-like compound SSYA10-001, aryl diketo acids (ADK), and dihydroxychromones. Additionally, adamantane-derived bananins, natural flavonoids, one acrylamide derivative [(E)-3-(furan-2-yl)-N-(4-sulfamoylphenyl)acrylamide], a purine derivative (7-ethyl-8-mercapto-3-methyl-3,7-dihydro-1 H-purine-2,6-dione), and a few bismuth complexes. The IC50 of patented inhibitors ranges between 0.82 µM and 8.95 µM, depending upon the assays used. Considering the urgency of clinical interventions against Coronavirus Disease-19 (COVID-19), it is important to consider developing antiviral portfolios consisting of small molecules.Areas covered: This review examines coronavirus helicases as antiviral targets, and the potential of previously patented and experimental compounds to inhibit the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) helicase.Expert opinion: Small molecule coronavirus helicase inhibitors represent attractive pharmacological modalities for the treatment of coronaviruses such as SARS-CoV and SARS-CoV-2. Rightfully so, the current emphasis is focused upon the development of vaccines. However, vaccines may not work for everyone and broad-based adoption of vaccinations is an increasingly challenging societal endeavor. Therefore, it is important to develop additional pharmacological antivirals against the highly conserved coronavirus helicases to broadly protect against this and subsequent coronavirus epidemics.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Development , Methyltransferases/antagonists & inhibitors , RNA Helicases/antagonists & inhibitors , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Humans , Methyltransferases/chemistry , Methyltransferases/physiology , Patents as Topic , RNA Helicases/chemistry , RNA Helicases/physiology , Triazoles/pharmacology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/physiology
13.
J Proteome Res ; 19(11): 4259-4274, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-960274

ABSTRACT

Emerging and re-emerging infectious diseases due to RNA viruses cause major negative consequences for the quality of life, public health, and overall economic development. Most of the RNA viruses causing illnesses in humans are of zoonotic origin. Zoonotic viruses can directly be transferred from animals to humans through adaptation, followed by human-to-human transmission, such as in human immunodeficiency virus (HIV), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and, more recently, SARS coronavirus 2 (SARS-CoV-2), or they can be transferred through insects or vectors, as in the case of Crimean-Congo hemorrhagic fever virus (CCHFV), Zika virus (ZIKV), and dengue virus (DENV). At the present, there are no vaccines or antiviral compounds against most of these viruses. Because proteins possess a vast array of functions in all known biological systems, proteomics-based strategies can provide important insights into the investigation of disease pathogenesis and the identification of promising antiviral drug targets during an epidemic or pandemic. Mass spectrometry technology has provided the capacity required for the precise identification and the sensitive and high-throughput analysis of proteins on a large scale and has contributed greatly to unravelling key protein-protein interactions, discovering signaling networks, and understanding disease mechanisms. In this Review, we present an account of quantitative proteomics and its application in some prominent recent examples of emerging and re-emerging RNA virus diseases like HIV-1, CCHFV, ZIKV, and DENV, with more detail with respect to coronaviruses (MERS-CoV and SARS-CoV) as well as the recent SARS-CoV-2 pandemic.


Subject(s)
Communicable Diseases, Emerging , Proteomics , RNA Virus Infections , Animals , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/therapy , Communicable Diseases, Emerging/virology , Coronavirus Infections/diagnosis , Humans , Pandemics , Pneumonia, Viral , RNA Virus Infections/diagnosis , RNA Virus Infections/therapy , RNA Virus Infections/virology , RNA Viruses
15.
Emerg Microbes Infect ; 9(1): 1748-1760, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-658315

ABSTRACT

How severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections engage cellular host pathways and innate immunity in infected cells remains largely elusive. We performed an integrative proteo-transcriptomics analysis in SARS-CoV-2 infected Huh7 cells to map the cellular response to the invading virus over time. We identified four pathways, ErbB, HIF-1, mTOR and TNF signaling, among others that were markedly modulated during the course of the SARS-CoV-2 infection in vitro. Western blot validation of the downstream effector molecules of these pathways revealed a dose-dependent activation of Akt, mTOR, S6K1 and 4E-BP1 at 24 hours post infection (hpi). However, we found a significant inhibition of HIF-1α through 24hpi and 48hpi of the infection, suggesting a crosstalk between the SARS-CoV-2 and the Akt/mTOR/HIF-1 signaling pathways. Inhibition of the mTOR signaling pathway using Akt inhibitor MK-2206 showed a significant reduction in virus production. Further investigations are required to better understand the molecular sequelae in order to guide potential therapy in the management of severe coronavirus disease 2019 (COVID-19) patients.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/virology , Gene Expression Profiling/methods , Pneumonia, Viral/virology , Proteomics/methods , Signal Transduction , COVID-19 , Cell Line , Chromatography, Liquid , Coronavirus Infections/genetics , Coronavirus Infections/metabolism , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , SARS-CoV-2 , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tandem Mass Spectrometry
16.
Non-conventional in English | WHO COVID | ID: covidwho-694196

ABSTRACT

BACKGROUND: The COVID-19 infection which emerged in December 2019, is caused by the virus SARS-CoV-2. Infection with this virus can lead to severe respiratory illness, however, myocarditis has also been reported. The purpose of this study is to identify the clinical features of myocarditis in COVID-19 patients. METHODS: A systematic review was conducted to investigate characteristics of myocarditis in patients infected with COVID-19 using the search term "Coronavirus" or "COVID" and "myocarditis," "heart," or "retrospective." Case reports and retrospective studies were gathered by searching Medline/Pubmed, Google Scholar, CINAHL, Cochrane CENTRAL, and Web of Science databases. 11 articles were selected for review. RESULTS: COVID-19 myocarditis affected patients over the age of 50 and incidences among both genders were equally reported. Patients presented with dyspnea, cough, fever with hypotension and chest pain. Laboratory tests revealed leukocytosis with increased C-reactive protein, while arterial blood gas analysis demonstrated respiratory acidosis. All cardiac markers were elevated. Radiographic imaging of the chest showed bilateral ground glass opacities or bilateral infiltrates, while cardiac magnetic resonance imaging produced late gadolinium enhancements. Electrocardiography demonstrated ST-segment elevation or inverted T waves, while echocardiography revealed reduced left ventricular ejection fraction with cardiomegaly or increased wall thickness. Management with corticosteroids was favored in most cases, followed by antiviral medication. The majority of studies reported either recovery or no further clinical deterioration. CONCLUSION: Current available data on COVID-19 myocarditis is limited. Further research is needed to advance our understanding of COVID-19 myocarditis.

SELECTION OF CITATIONS
SEARCH DETAIL